DISCRIME STRUCTURES

Discrete Structures

PLANAR GRAPHS

A graph is called planar if it can be drawn in the plane without any edge crossed (crossing means the intersection of lines). Such a drawing is called a plane drawing of the graph

PROPERTIES OF PLANAR GRAPHS:

Euler's Formula: For any connected planar graph with V vertices, E edges, and F faces (including the infinite outer face), the relationship is:

$$V - E + F = 2$$

This formula holds for all connected planar graphs.

Edge Bound: For a planar graph:

If the graph is simple (no loops or multiple edges), $E \le 3V - 6$.

If the graph is bipartite, $E \le 2V - 4$.

Four Color Theorem: Every planar graph can be colored with at most four colors such that no two adjacent vertices share the same color.

Applications of Planar Graphs:

Network Design:

1. Planar graphs model road systems, power grids, and communication networks where crossings are undesirable.

2. Geographical Mapping:

1. Used in creating maps where regions are adjacent and coloring is required (Four Color Theorem).

3. Computer Graphics:

1 Planar graphs are used in mesh generation for 3D modeling.

Examples of Planar Graphs:

This graph is a planar graph because none of its edge crossed each other.

Also
$$V - E + F = 2$$
.

The above graph is also planar graph.

