METHOD OF PROOF

TYPES OF METHOD OF PROOF

- 1. Direct proof.
- 2. Indirect proof.

Indirect proof there will be two methods.

- Contrapositive method.
- Contradictive method.
- 3. Counter example.

Basic Definitions

An integer n is an even number if there exists an integer k such that n = 2k.

An integer n is an odd number if there exists an integer k such that n = 2k+1.

DIRECT PROOF

In direct proof we assume the given condition p and proof the result directly.

•An implication $p \rightarrow q$ can be proved by showing that if p is true, then q is also true.

EXERCISE:

Prove that the product of an even integer and an odd integer is even.

SOLUTION:

and

Suppose m is an even integer and n is an odd integer. Then

m = 2k for some integer k n = 2l + 1 for some integer l

Now

$$m \cdot n = 2k \cdot (2l + 1)$$

= $2 \cdot k (2l + 1)$
= $2 \cdot r$ where $r = k(2l + 1)$ is an integer

Hence m·n is even. (Proved)

The product of two odd numbers is odd.

Proof.

$$X=2m+1, Y=2n+1$$

$$XY = (2m+1)(2n+1)$$

$$=4mn+2m+2n+1$$

$$=2(2mn+n+m)+1$$

$$2mn+n+m=k$$

$$XY=2k+1$$
. That's odd

INDIRECT PROOF.

CONTRAPOSITION METHOD.

The method of proof by contrapositive maybe summarize.

- Express the statement in the form of if p then q.
- Rewrite this statement in the contrapositive form.
 If not q then not p
- Prove the contrapositive by direct debit.

Proof the Contrapositive

For an integer n, n is even if and only if n2 is even.

Method 1b: Prove P implies Q and not P implies not Q.

Statement: If n2 is even, then n is even

Contrapositive: If n is odd, then n2 is odd.

Proof (the contrapositive):

Since n is an odd number, n = 2k+1 for some integer k.

So
$$n^2 = (2k+1)^2$$

= $(2k)^2 + 2(2k) + 1 = 2(2k^2 + 2k) + 1$

EXAMPLE 2.

n² is divisible by 25.

```
Prove that if (n)^2 is not divisible by 25 then n is not divisible by 5.
Proof.
The contrapositive statement is
    if n is divisible by 5, then (n)^2 is divisible by 25
Suppose n is divisible by 5
                  For some integer k
n = 5k.
Squaring on both sides
(n)^2 = (5k)^2
 n^2=25k^2 where k^2 \notin \mathbb{Z}
```


CONTRADICTIONS METHOD.

- In this method,
- We assume the opposite of what we are trying to prove and get logical contradictions Hence our
- Assumption is wrong. Then the original result must be true.


```
Suppose n €Z
If 3n+2 is odd, then n is odd.
Solution.
According to contradictions,
Let n is even
Then n=2k. K€Z
Now, 3n+2=3(2k)+2
6k+2=2(3k+1)
            Where 3k+1 = m
```

2m is even
 our assumption is wrong
 Hence n is odd.

COUNTER EXAMPLE

- 1. In this method we can prove it disprove the statement by taking example.
- 2. Prove or disprove the statement if X and Y are real numbers.

EXAMPLE 1.

 Prove or disprove the statement if X and Y are real numbers.

$$X^2=Y^2$$
. if and only if. $X=Y$

Solution

if we take two numbers

-3 and 3

$$(-3)^2 = (3)$$

9=9 but -3 and 3 are not equal

So the statement is false

